Boost Converter Workshop Overview

Brady Salz October 11, 2015 **TECHNICAL ADVANCEMENT GROUP**

HIGH LEVEL

- Component Overview
- Ideal Converter
- Real Converter
- Implementation
- PCB

INDUCTOR

- E = LI or V = L dI/dt or Z = jwL
- AC "blocks", DC "shorts"
- "Opposite" of a capacitor
- Easy to make, hard to make precise
- Often used in RF or Oscillator circuits for tuning

Ц
\prec
\triangleleft
3
Γ

DIODE

- Exponential IV curve
 Can linearize to V > Vd, unlimited current, V < Vd,
- Negative/Low voltage "block", else "short"
- Used for rectifiers, reverse polarity, voltage regulator
- Orientation matters!!
 - Does not behave the same both ways

MOSFET (PFET/NFET)

- Voltage-Controlled Current Source
- 3 Terminals Drain Gate Source
- Two ways of viewing it (nFET):
 - Binary
 - Low voltage at gate, close up D-S connection (no curre
 - High voltage at gate, open up D-S connection (current
 - Continuous
 - Current through D-S is proportional to gate voltage
 - Has a min/max (off/saturated) point
- pFET same rules, just flip high flow (no current when high @ gate, etc)

IDEAL SCHEMATIC

DERIVATION

This "should be" a DC circuit with constant output voltage -> Implies DC current as well -> DC current means no inductor voltage

Assume driving switch with square wave

$$V_{L,on} + V_{L,off} = 0$$

$$T_{on}V_{in} + T_{off}(V_{in} - V_{out}) = 0$$

$$T_{period} (DV_{in} + (1 - D)(V_{in} - V_{out})) = 0$$

$$DV_{in} + V_{in} - V_{out} - D_{vin} + D V_{out} = 0$$

$$V_{in} - (1 - D)V_{out} = 0$$

$$V_{in} = (1 - D)V_{out}$$

$$V_{out} = V_{in} / (1 - D)$$

WAVEFORMS

ECE ILLINOIS

BASIC NON-IDEALITIES

MORE NON-IDEALITIES

FOURIER SERIES

Problem?

-> Switching at 3*f

SNUB IT OUT

ILLINOIS

LET SOMEONE ELSE HANDLE IT

TYPICAL APPLICATION

Figure 1. 2-Cell to 5V/600mA DC/DC Converter

LT1302 • TA02

WHAT'S INSIDE?

SCHEMATIC

PCB

BOARD

CITATIONS

 "Under the Hood of a DC/DC Boost Converter" by Brian Lynch <u>http://www.ti.com/download/trng/docs/seminar/Topic 3 Lynch.</u> pdf

LLINOIS

- "Boost Converter" Wikipedia <u>https://en.wikipedia.org/wiki/Boost_converter</u>
- LT1302 Datasheet <u>http://www.linear.com/product/LT1302</u>
- "MintyBoost Documentation" Adafruit <u>https://learn.adafruit.com/minty-boost/</u>